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Abstract

The finite-difference method is used to predict numerically the characteristics of hydromagnetic double-diffusive

convective flow of a binary gas mixture in a rectangular enclosure with the upper and lower walls being insulated.

Constant temperatures and concentrations are imposed along the left and right walls of the enclosure and a uniform

magnetic field is applied in the x-direction. Consistent with what is reported by previous investigators, an oscillation in
the flow is observed in the absence of the magnetic field for a specific range of buoyancy ratio values where the Prandtl

number Pr ¼ 1, the Lewis number Le ¼ 2, the thermal Rayleigh number RaT ¼ 105, and the aspect ratio A ¼ 2 for the
enclosure. In the presence of the magnetic field, however, no oscillatory behavior is observed. Numerical results are

reported for the effect of the heat generation or absorption coefficient and the Hartmann number on the contours of

streamline, temperature, concentration and density. In addition, results for the average Nusselt and Sherwood numbers

are presented and discussed for various parametric conditions. In this study, the thermal and compositional buoyancy

forces are assumed to be opposite. � 2002 Published by Elsevier Science Ltd.

1. Introduction

Natural convection is of great importance in many

industrial applications. Convection plays a dominant

role in crystal growth in which it affects the fluid-phase

composition and temperature at the phase interface that

results in a single crystal since poor crystal quality is due

to turbulence. It is the foundation in modern electronics

industry to produce pure and perfect crystals to make

transistors, lasers rods, microwave devices, infrared de-

tectors, memory devices, and integrated circuits. Natural

convection adversely affects local growth conditions and

enhances the overall transport rate. The combination of

temperature and concentration gradients in the fluid will

lead to buoyancy-driven flows. This has an important

influence on the solidification process in a binary system.

When heat and mass transfer occurs simultaneously, it

leads to a complex fluid motion called double-diffusive

convection. Double-diffusion occurs in a wide range of

scientific fields such as oceanography, astrophysics, ge-

ology, biology and chemical processes (see, for instance,

[4]). Ostrach [20] and Viskanta et al. [27] reported

complete reviews on the subject. Bejan [5] reported a

fundamental study of scale analysis relative to heat and

mass transfer within cavities submitted to horizontal

combined and pure temperature and concentration

gradients. Kamotani et al. [12] considered an experi-

mental study of natural convection in shallow enclosures

with horizontal temperature and concentration gradi-

ents. Other experimental studies dealing with thermo-

solutal convection in rectangular enclosures were

reported by Ostrach et al. [19] and Lee et al. [13]. Lee

and Hyun [14] and Hyun and Lee [10] reported nu-

merical solutions for unsteady double-diffusive convec-

tion in a rectangular enclosure with aiding and opposing

temperature and concentration gradients that were

in good agreement with reported experimental re-

sults. Other related numerical studies dealing with
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double-diffusive natural convection in cavities were

considered by Ranganathan and Viskanta [22], Trevisan

and Bejan [25], Beghein et al. [4] andNishimura et al. [17].

Electrically conducting fluids in the presence of a

magnetic field have been used extensively in many ap-

plications such as crystal growth. Oreper and Szekely

[18] have found that the presence of a magnetic field can

suppress natural convection currents and that the

strength of the magnetic field is one of the important

factors in determining the quality of the crystal. Ozoe

and Maruo [21] have investigated magnetic and gravi-

tational natural convection of melted silicon-two di-

mensional numerical computations for the rate of heat

transfer. Garandet et al. [9] and Alchaar et al. [2] have

considered natural convection heat transfer in a rect-

angular enclosure with a transverse magnetic field. Ru-

draiah et al. [23] and Al-Najem et al. [3] have studied the

effects of a magnetic field on free convection in a rect-

angular enclosure.

Natural convection heat transfer induced by internal

heat generation has recently received considerable

attention because of numerous applications in geo-

physics and energy-related engineering problems. Such

applications include heat removal from nuclear fuel

debris, underground disposal of radioactive waste ma-

terials, storage of foodstuff, and exothermic chemical

reactions in packed-bed reactor (see, for instance, [11]).

Acharya and Goldstein [1] studied numerically two-di-

mensional natural convection of air in an externally

heated vertical or inclined square box containing uni-

formly distributed internal energy sources. Their nu-

merical results showed two distinct flow pattern systems

depending on the ratio of the internal to the external

Rayleigh numbers. Also, it was found that the average

heat flux ratio along the cold wall increased with in-

creasing external Rayleigh numbers and decreasing in-

ternal Rayleigh numbers. Recently, Churbanov et al. [8]

studied numerically unsteady natural convection of a

heat generating fluid in a vertical rectangular enclosure

with isothermal or adiabatic rigid walls. Their results

were obtained using a finite-difference scheme in the

two-dimensional stream function-vorticity formulation.

Nomenclature

A enclosure aspect ratio ¼ H=W
B0 magnetic induction

c concentration of species

ch high species concentration (source)

c‘ low species concentration (sink)

C dimensionless species concentration ¼
ðc � c‘Þ=ðch � c‘Þ � 0:5

D species diffusivity

g gravitational acceleration

H enclosure height

Ha Hartmann number ¼ B0W
ffiffiffiffiffiffiffiffi
r=l

p
Le Lewis number ¼ a=D
N buoyancy ratio ¼ bcðch � c‘Þ=½bTðTh � TcÞ�
Nu average Nusselt number

p fluid pressure

Pr Prandtl number ¼ m=a
Q0 dimensional heat generation or absorption

coefficient

RaT thermal Rayleigh number ¼ gbTðTh � TcÞW 3=
ðamÞ

Sh average Sherwood number

t time

t0 period of oscillation

T temperature

Th hot wall temperature (source)

Tc cold wall temperature (sink)

u horizontal velocity component

U dimensionless horizontal velocity component

¼ uW =a

v vertical velocity component

V dimensionless vertical velocity component ¼
mW =a

W enclosure width

x horizontal coordinate

X dimensionless horizontal coordinate ¼ x=W
y vertical coordinate

Y dimensionless vertical coordinate ¼ y=W

Greek symbols

a thermal diffusivity

bT thermal expansion coefficient

bc compositional expansion coefficient

/ dimensionless heat generation or absorption ¼
Q0W 2=ðqcpaÞ

l dynamic viscosity

m kinematic viscosity ¼ l=q
h dimensionless

temperature ¼ ðT � TcÞ=ðTh � TcÞ � 0:5
q density

q� dimensionless density ¼
NC � h

r electrical conductivity

s dimensionless time ¼ at=W 2

s0 dimensionless period of oscillation ¼
at0=W 2

X vorticity

W dimensionless stream function ¼ W=a
w stream function

f dimensionless vorticity ¼ XW 2=a
r2 Laplacian operator
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Steady-state as well as oscillating solutions were ob-

tained and compared with other numerical and experi-

mental published data. Other related works dealing with

temperature-dependent heat generation effects can be

found in the papers by Vajravelu and Nayfeh [26] and

Chamkha [7].

In this paper, the problem of unsteady, laminar,

hydromagnetic, double-diffusive natural convection flow

inside a rectangular enclosure in the presence of heat

generation or absorption is considered.

2. Mathematical model

The schematic of the system under consideration is

shown in Fig. 1. The temperatures Th and Tc are uni-
formly imposed along the left and right walls and the top

and bottom walls are assumed to be adiabatic and im-

permeable to mass transfer. The left wall is the source

where the mixture diffuses to the right wall (sink). A

magnetic field with uniform strength B0 is applied in the
x-direction. Also, the enclosure is filled with a binary

mixture of gas. The fluid is assumed to be incompress-

ible, Newtonian, electrically conducting, heat generating

or absorbing and viscous. The viscous dissipation and

magnetic dissipation are all assumed to be negligible.

The magnetic Reynolds number is assumed to be so

small that the induced magnetic field is neglected. The

Boussinesq approximation with opposite thermal and

compositional buoyancy forces is used for the body

force terms in the momentum equations.

The governing equations for the problem under

consideration are based on the balance laws of mass,

linear momentum, thermal energy and concentration

in two dimensions. Following the previous assump-

tions, these equations can be written in dimensional

form as

ou
ox

þ ov
oy

¼ 0; ð1Þ

ou
ot

þ u
ou
ox

þ v
ou
oy

¼ � 1
q
op
ox

þ v
o2u
ox2

�
þ o2u

oy2

�
; ð2Þ

ov
ot

þ u
ov
ox

þ v
ov
oy

¼ � 1
q
op
oy

þ v
o2v
ox2

�
þ o2v
oy2

�

�gbTðT � TcÞ þ gbcðc � c‘Þ �
rB20
q

v; ð3Þ

oT
ot

þ u
oT
ox

þ v
oT
oy

¼ a
o2T
ox2

�
þ o2T

oy2

�
þ Q0

qcp
ðT � TcÞ; ð4Þ

oc
ot

þ u
oc
ox

þ v
oc
oy

¼ D
o2c
ox2

�
þ o2c
oy2

�
; ð5Þ

where u and v are the velocity components in the x- and
y-directions. bT and bc are the thermal and composi-
tional expansion coefficients, respectively. x, y and t are

the horizontal and vertical distances and time, respec-

tively. p, T and c are the pressure, temperature and

concentration, respectively. a, v, cp, and q are the fluid
thermal diffusivity, kinematic viscosity, specific heat at

constant pressure and fluid density, respectively. D is the

species diffusivity, Th and Tc are the hot and cold wall
temperatures, ch and c‘ are the concentrations at the hot
and cold walls, and g is the gravitational acceleration. r,
B0, Q0 are the electrical conductivity, magnetic induc-
tion, and the dimensional heat generation or absorption

coefficient, respectively.

The initial and boundary conditions for the problem

can be written as

t ¼ 0 : u ¼ 0; v ¼ 0; T ¼ Tc; c ¼ c‘;

x ¼ 0; y ¼ y : u ¼ 0; v ¼ 0; T ¼ Th; c ¼ ch;

x ¼ W ; y ¼ y : u ¼ 0; v ¼ 0; T ¼ Tc; c ¼ c‘;

x ¼ x; y ¼ 0 : u ¼ 0; v ¼ 0; oT
oy

¼ 0; oc
oy

¼ 0;

x ¼ x; y ¼ H : u ¼ 0; v ¼ 0; oT
oy

¼ 0; oc
oy

¼ 0;

ð6Þ

where W and H are the width and height of the enclo-

sure, respectively.

The stream function and vorticity can be defined in

the usual way as

u ¼ oW
oy

; v ¼ � oW
ox

; X ¼ � o2W
ox2

�
þ o2W

oy2

�
; ð7Þ

Fig. 1. Schematic diagram and coordinate system.
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where W is the dimensional stream function and X is the
dimensional vorticity.

Eqs. (1)–(7) are nondimensionalized using the fol-

lowing dimensionless variables:

f ¼ XW 2

a
; w ¼ W

a
; h ¼ ðT � TcÞ

ðTh � TcÞ
� 0:5;

C ¼ ðc � c‘Þ
ðch � c‘Þ

� 0:5; X ¼ x
W

; Y ¼ y
W

;

s ¼ at
W 2

; Pr ¼ m=a; Ha ¼ B0W
ffiffiffi
r
l

r
;

N ¼ bcðch � c‘Þ
bTðTh � TcÞ

; Le ¼ a
D
;

RaT ¼ gbTðTh � TcÞW 3

av
; / ¼ Q0W 2

qcpa
:

ð8Þ

The dimensionless parameters appearing in the above

equations are the Prandtl number ðPrÞ, the Lewis num-
ber ðLeÞ, the thermal Rayleigh number (RaT), the
Hartmann number ðHaÞ, the dimensionless heat gener-
ation or absorption coefficient (/) and the buoyancy
ratio (N). f is the dimensionless vorticity, and w is the

dimensionless stream function. s is the dimensionless
time. X and Y are the dimensionless x- and y-coordi-

nates. h and C are the dimensionless temperature and

concentration.

By employing Eq. (8), the resulting dimensionless

equations (after eliminating the pressure gradient terms)

can be written as

f ¼ oV
oX

� oU
oY

¼ �r2w; ð9Þ

of
os

þU
of
oX

þ V
of
oY

¼ Prr2fþRaTPr
�
� oh
oX

þN
oC
oX

�
�Ha2Pr

oV
oX

; ð10Þ

oh
os

þ U
oh
oX

þ V
oh
oY

¼ r2h þ /½h þ 0:5�; ð11Þ

oC
os

þ U
oC
oX

þ V
oC
oY

¼ r2C=Le: ð12Þ

The dimensionless initial and boundary conditions

become

s ¼ 0:
U ¼ V ¼ w ¼ 0; h ¼ �0:5; C ¼ �0:5; ð13aÞ

Y ¼ 0 (horizontal top wall):

U ¼ V ¼ w ¼ 0; f ¼ � o2w
oY 2

� �
;

oh
oY

¼ 0; oC
oY

¼ 0;

ð13bÞ

Y ¼ H=W (horizontal bottom wall):

U ¼ V ¼ w ¼ 0; f ¼ � o2w
oY 2

� �
;

oh
oY

¼ 0; oC
oY

¼ 0;

ð13cÞ

X ¼ 0 (vertical left wall):

U ¼ V ¼ w ¼ 0; f ¼ � o2w
oX 2

� �
;

h ¼ 0:5; C ¼ 0:5;
ð13dÞ

X ¼ 1 (vertical right wall):

U ¼ V ¼ w ¼ 0; f ¼ � o2w
oX 2

� �
;

h ¼ �0:5; C ¼ �0:5:
ð13eÞ

Computations were performed numerically to solve

Eqs. (9)–(13e) using a 300 MHz PC with the Fortran

language. The finite-difference approximation from the

Taylor series is used to solve the partial differential di-

mensionless equations with an aspect ratio of 2 for the

rectangular enclosure. In all the results obtained Pr ¼ 1:0,
Le ¼ 2:0 and RaT ¼ 105 were used. A computational

domain consisting of 31
 41 grid points was used. The
details for the numerical algorithm are given below.

3. Numerical algorithm

The numerical algorithm used to solve Eqs. (9)–(13e)

is based on the finite-difference methodology. First, the

central difference is used to approximate the second

derivatives and then it is transformed to the implicit line

tridiagonal equations and solved in the x-direction for

the concentration, temperature, vorticity and the stream

function. This method was stable and gave results that

are very close to the numerical results obtained by Ni-

shimura et al. [17] using the finite-element method.

The finite-difference formulation of Eq. (9) is

f ¼ �
½wnþ1

iþ1;j � 2w
nþ1
i;j þ wnþ1

i�1;j�
DX 2

�
½wn

i;jþ1 � 2w
nþ1
i;j þ wn

i;j�1�
DY 2

;

ð14aÞ

which can be rearranged as

wnþ1
i�1;j½E1� þ wnþ1

i;j ½B1� þ wnþ1
iþ1;j½A1� ¼ ½D1�; ð14bÞ

where

E1 ¼ ½DY 2�; B1 ¼ ½�2DY 2 � 2DX 2�; A1 ¼ ½DY 2�;
D1 ¼ �fi;jDX 2DY 2 � DX 2½wn

i;jþ1 þ wn
i;j�1�:

ð14cÞ

The finite-difference formulation for Eq. (10) will have

the form
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½fnþ1
i;j � fn

i;j�
Ds

þ Ui;j

½fnþ1
iþ1;j � fnþ1

i�1;j�
2DX

þ Vi;j

½fn
i;jþ1 � fn

i;j�1�
2DY

¼ Pr
½fnþ1

iþ1;j � 2f
nþ1
i;j þ fnþ1

i�1;j�
DX 2

(
þ
½fn

i;jþ1 � 2f
nþ1
i;j þ fn

i;j�1�
DY 2

)

þRaT Pr
�
� ½hiþ1;j � hi�1;j�

2DX
þ N

½Ciþ1;j � Ci�1;j�
2DX

	

� Ha2Pr
½Viþ1;j � Vi�1;j�

2DX
;

ð15aÞ

which can be rearranged as

fnþ1
i�1;j½E1� þ fnþ1

i;j ½B1� þ fnþ1
iþ1;j½A1� ¼ ½D1�; ð15bÞ

where

E1 ¼


� Ui;jDs
2DX

� PrDs
DX 2

�
; B1 ¼ 1:0



þ 2PrDs

DX 2
þ 2PrDs

DY 2

�

A1 ¼


� Ui;jDs
2DX

� PrDs
DX 2

�
;

D1 ¼ fn
i;jþ1



� Vi;jDs
2DY

� PrDs
DY 2

�
þ fn

i;j½1:0�

þ fn
i;j�1

Vi;jDs
2DY



þ PrDs

DY 2

�

þ RaT PrDs

�
� ½hiþ1;j � hi�1;j�

2DX
þ N

½Ciþ1;j � Ci�1;j�
2DX

	

� Ha2PrDs
½Viþ1;j � Vi�1;j�

2DX
: ð15cÞ

The finite-difference formulation for Eq. (11) will be

written as

hnþ1
i;j � hn

i;j

h i
Ds

þ Ui;j

hnþ1
iþ1;j � hnþ1

i�1;j

h i
2DX

þ Vi;j

hn
i;jþ1 � hn

i;j�1

h i
2DY

¼
hnþ1

iþ1;j � 2h
nþ1
i;j þ hnþ1

i�1;j

h i
DX 2

8<
: þ

hn
i;jþ1 � 2h

n
i;j þ hn

i;j�1

h i
DY 2

9=
;

þ / hnþ1
i;j

h
þ 0:5

i
; ð16aÞ

which can be rearranged as

hnþ1
i�1;j½E1� þ hnþ1

i;j ½B1� þ hnþ1
iþ1;j½A1� ¼ ½D1�; ð16bÞ

where

E1 ¼


� Ui;jDs
2DX

� Ds
DX 2

�
; B1 ¼ 1:0



þ 2Ds

DX 2
� /Ds

�
;

A1 ¼


� Ui;jDs
2DX

� Ds
DX 2

�
;

D1 ¼ hn
i;jþ1



� Vi;jDs
2DY

þ Ds
DY 2

�
þ hn

i;j 1:0



� 2Ds

DY 2

�

þ hn
i;j�1

Vi;jDs
2DY



þ Ds

DY 2

�
þ /Ds

2
: ð16cÞ

The finite-difference formulation for Eq. (12) can be

written as

Cnþ1
i;j � Cn

i;j

h i
Ds

þ Ui;j

Cnþ1
iþ1;j � Cnþ1

i�1;j

h i
2DX

þ Vi;j

Cn
i;jþ1 � Cn

i;j�1

h i
2DY

¼ 1

Le

Cnþ1
iþ1;j � 2Cnþ1

i;j þ Cnþ1
i�1;j

h i
DX 2

8<
:

þ
Cn

i;jþ1 � 2Cn
i;j þ Cn

i;j�1

h i
DY 2

9=
;; ð17aÞ

which can be rearranged as

Cnþ1
i�1;j½E1� þ Cnþ1

i;j ½B1� þ Cnþ1
iþ1;j½A1� ¼ ½D1�; ð17bÞ

where

E1 ¼


� Ui;jDs
2DX

� Ds
LeDX 2

�
; B1 ¼ 1:0



þ 2Ds

LeDX 2

�
;

A1 ¼


� Ui;jDs
2DX

� Ds
LeDX 2

�

D1 ¼ Cn
i;jþ1



� Vi;jDs
2DY

þ Ds
LeDY 2

�
þ Cn

i;j 1:0



� 2Ds

LeDY 2

�

þ Cn
i;j�1

Vi;jDs
2DY



þ Ds

LeDY 2

�
; ð17cÞ

U and V can be determined explicitly from

Unþ1
i;j ¼

½wi;jþ1 � wi;j�1�
2DY

; V nþ1
i;j ¼

½wiþ1;j � wi�1;j�
2DX

: ð18Þ

The finite-difference formulation for the boundary

condition (13b)–(13e) is

Y ¼ 0 (horizontal top wall):

f ¼ � o2w
oY 2

� �
) fnþ1

i;1 ¼ �
½2wn

i;1 � 5w
n
i;2 þ 4w

n
i;3 � wn

i;4�
DY 2

;

ð19Þ

oh
oY

¼ 0 ) hnþ1
i;j ¼

½4hn
i;2 � hn

i;3�
3:0

; ð20Þ

oC
oY

¼ 0 ) Cnþ1
i;j ¼

½4Cn
i;2 � Cn

i;3�
3:0

: ð21Þ

Y ¼ H=W (horizontal bottom wall):

f ¼ � o2w
oY 2

� �
) fnþ1

i;j max

¼ �
½�wn

i;j max�3 þ 4w
n
i;j max�2 � 5w

n
i;j max�1 þ 2w

n
i;j max�

DY 2
;

ð22Þ

oh
oY

¼ 0 ) hnþ1
i;j max ¼

½4hn
i;j max�1 � hn

i;j max�2�
3:0

; ð23Þ
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Fig. 2. (a) Steady thermal-dominated solution for N ¼ 0:8; Ha ¼ 0:0, / ¼ 0:0. (b) Steady compositional-dominated solution for
N ¼ 1:3; Ha ¼ 0:0; / ¼ 0:0.
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Fig. 2. (Continued).
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oC
oY

¼ 0 ) Cnþ1
i;j max ¼

½4Cn
i;j max�1 � Cn

i;j max�2�
3:0

: ð24Þ

X ¼ 0 (vertical left wall):

f ¼ � o2w
oX 2

� �
) fnþ1

1;j ¼ 2
½wn
1;j � wn

2;j�
DX 2

; ð25Þ

hnþ1
1;j ¼ 0:5; Cnþ1

1;j ¼ 0:5: ð26Þ

X ¼ 1 (vertical right wall):

f ¼ � o2w
oX 2

� �
) fnþ1

i max;j ¼ 2
½wn

i max;j � wn
i max�1;j�

DX 2
;

ð27Þ

hnþ1
i max;j ¼ �0:5; Cnþ1

i max;j ¼ �0:5: ð28Þ

The subscripts i and j denote the X and Y locations. The

superscripts n and n þ 1 denote the time steps, respec-
tively. The computation is carried out for 31
 41 grid
nodal points for a time step of 10�5, DX ¼ 1=30 and
DY ¼ 1=20. The convergence criterion required that the
difference between the current and previous iterations

for all of the dependent variables be 10�4.

The Nusselt and Sherwood numbers are averaged

and evaluated along the left boundary of the enclosure

which may be expressed as

Nu ¼ �
Z 2

0

oh
oX

� �
dY ; ð29Þ

Sh ¼ �
Z 2

0

oC
oX

� �
dY : ð30Þ

4. Solution procedure

1. All dependent variables are initialized to zero.

2. The new boundary condition values at (n þ 1) are cal-
culated for all walls from the previous values at

(n).
3. The new concentration values at (n þ 1) are calcu-
lated from the previous (n) values, and then a subrou-
tine is called to solve the obtained tridiagonal

equations for all the concentration values at all the

internal grid points.

4. The temperature, vorticity, and the stream function

are calculated in the same way as in step (3), respec-

tively,

5. The velocity components U and V are calculated at

(n þ 1) from the values at (n) explicitly for all the in-
ternal grid points.

6. The error is calculated for the concentration, temper-

ature, and vorticity at the last time step (only for stea-

dy solution).

7. The same procedure is followed by starting with step

(2) to obtain the solution at the next time step at

(n þ 2).

Fig. 3. Oscillatory behavior of jwminj and jwmaxj with time for Ha ¼ 0:0, Le ¼ 2:0, N ¼ 1:0, Pr ¼ 1:0, RaT ¼ 105, and / ¼ 0:0.
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Fig. 4. Case (a) Temperature, concentration, density and streamline contours during a period of oscillation for N ¼ 1:0; Ha ¼
0:0; / ¼ 0:0. Case (b) Temperature, concentration, density and streamline contours during a period of oscillation for N ¼ 1:0; Ha ¼
0:0; / ¼ 0:0. Case (c) Temperature, concentration, density and streamline contours during a period of oscillation for

N ¼ 1:0; Ha ¼ 0:0; / ¼ 0:0. Case (d) Temperature, concentration, density and streamline contours during a period of oscillation for
N ¼ 1:0, Ha ¼ 0:0, / ¼ 0:0.
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Fig. 4. (Continued).
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This procedure is for unsteady solution. If the steady

solution is required, then the concentration and

temperature are only needed to be updated for a

number of internal loops for each single time step.

Then, at the end of this single time step, the vorticity,

stream function, and velocity components (U and V)

need to be updated.

8. The average Nusselt and Sherwood numbers are then

calculated at the left vertical wall.

5. Numerical validation tests

In order to check on the accuracy of the numerical

technique employed for the solution of the problem

considered in the present study, it was validated by

performing simulation for double-diffusive convection

flow in a vertical rectangular enclosure with combined

horizontal temperature and concentration gradients and

in the absence of the magnetic field and heat generation

or absorption effects which was reported earlier by Ni-

shimura et al. [17]. Figs. 2(a) and (b) present compari-

sons for the streamlines, isotherms, concentration

contours and density contours of the present work at

N ¼ 0:8 (thermal-dominated flow) and N ¼ 1:3 (com-
positional-dominated flow) with those of Nishimura

et al. [17]. These comparisons show a good agreement

between the results. Fig. 3 illustrates the oscillatory be-

havior in jWmaxj and jWminj with time predicted by

zNishimura et al. [17]. As predicted by these authors, the

period of oscillation s0 was found to be 0.05091. Also,
Figs. 4(a)–(d) corresponding to points a, b, c and d in

Fig. 3, respectively, predict the oscillatory behavior with

time in the thermal and compositional recirculations at

N ¼ 1:0 through the streamline, temperature, concen-
tration, and density contours which compare well with

the results reported by Nishimura et al. [17]. Moreover,

Table 1 shows a favorable comparison between numer-

ical results for a period of oscillation and stream func-

tion extrema jwmaxj and jwminj at N ¼ 1:0 obtained by
three different numerical schemes: the finite-element

method, spectral method (reported by Nishimura et al.

[17]) and the finite-difference method of the present

work. These various comparisons lend confidence in the

numerical results to be reported subsequently.

6. Result and discussion

In this section, numerical results for the streamline,

temperature, concentration and density contours as well

as selected velocity, temperature and concentration

profiles at mid-section of the enclosure for various val-

ues of Hartmann number Ha and the heat generation or
absorption coefficient / will be reported. In addition,

representative results for the average Nusselt number Nu
and the average Sherwood number Sh at various con-
ditions will be presented and discussed.

Fig. 5 presents steady-state contours for the stream-

line, temperature, concentration, and density at various

values of the Hartmann number Ha for Le ¼ 2:0,
N ¼ 0:8, Pr ¼ 1:0, RaT ¼ 105 and / ¼ 0:0. As mentioned
by Nishimura et al. [17], when N < 1:0 the flow is pri-
marily dominated by thermal buoyancy effects while for

N > 1:0 the flow is mainly dominated by compositional
buoyancy effects. The interaction between the thermal

and compositional buoyancy effects is small except for

values of N close to unity where these buoyancy effects

are of the same order of magnitude but in opposite di-

rections. Therefore, for N ¼ 0:8, thermal buoyancy
dominates and a large central clockwise thermal recir-

culation is predicted with the isotherms not being hori-

zontally uniform in the core region within the enclosure.

Furthermore, the concentration contours are distorted

in the core of the enclosure while the density contours

indicate a stable stratification in the vertical direction

except near the insulated walls of the enclosure. A

stagnant zone in the corners of the enclosure is also

observed. The application of the magnetic field is ob-

served to cause the streamlines to be distorted with the

formation of a smaller thermal and slower clockwise

recirculation in the core region. For large values of Ha
the recirculation cell is stretched covering the stagnant

zone in the corners and then splits into two smaller

thermal circulating cells situated close to each of the

insulated upper and bottom walls. The temperature and

concentration contours tend to become more similar

except in the core region as the Ha increases causing the
density contours to become more horizontally uniform

for Ha ¼ 10 and stably stratified in the core region away
front the walls of the enclosure. Also, for very large

Hartmann numbers (Ha ¼ 50) the isotherms and

Table 1

Comparison between the present method and two numerical methods for N ¼ 1:0

Finite-element method

(31
 41 points) [17]
Spectral method

(40
 80 points) [15]
Finite-difference method

(31
 41 points) present results

s0 0.0497 0.0494 0.05091

Max jwmaxj 26.7 26.8 27.8

Min jwmaxj 12.9 12.7 13.7

Max jwminj 5.76 5.52 5.85

Min jwmaxj 0.351 0.333 0.333
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Fig. 5. Steady thermal-dominated solution for Le ¼ 2:0, N ¼ 0:8, Pr ¼ 1:0, RaT ¼ 105, and / ¼ 0:0.
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isoconcentration contours are parallel to the vertical

walls except in the immediate vicinity of the horizontal

walls indicating the approach to a conduction regime. A

main contribution of the application of the magnetic

field is seen to suppress the overall heat transfer in the

enclosure.

Fig. 6. Steady compositional-dominated solution for Le ¼ 2:0, N ¼ 1:3, Pr ¼ 1:0, RaT ¼ 105, and / ¼ 0:0.
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Fig. 7. Steady thermal-dominated solution for Ha ¼ 0:0, Le ¼ 2:0, N ¼ 0:8, Pr ¼ 1:0, and RaT ¼ 105.
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Fig. 8. Steady compositional-dominated solution for Ha ¼ 0:0, Le ¼ 2:0, N ¼ 1:3, Pr ¼ 1:0, and RaT ¼ 105.
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Fig. 6 displays similar results as shown in Fig. 5 ex-

cept for N ¼ 1:3. For this specific value of N, the flow is
dominated by compositional buoyancy effects. In this

case, a counterclockwise compositional recirculation

exists in the core region of the enclosure along with two

clockwise thermal recirculations occurring near the top

right and bottom left corners of the enclosure. The

contours for temperature and concentration are almost

parallel to each other within the center of the enclosure

away from the walls that produces more horizontally

uniform density contours that are stably stratified in the

vertical direction. Similar trends in the flow patterns are

predicted where the two clockwise thermal recirculations

become smaller and the counterclockwise compositional

recirculation is slowed down as Ha increases. For large
values of Ha (Ha ¼ 50) the two thermal recirculations
are eliminated and the flow within the enclosure is cir-

culating at a slower rate due to compositional buoyancy

effects. The other contours appear to change slightly as

Ha increases.
In Fig. 7, it is observed, for N ¼ 0:8, that the presence

of a heat sink (heat absorption, / < 0) within the en-
closure causes higher heat transfer rates with the thermal

recirculation within the enclosure moving upward with a

slightly faster clockwise circulation. However, the pres-

ence of a heat source (heat generation, / > 0) produces
less heat transfer rates and the thermal recirculation

tends to move downward with a slightly slower clock-

wise circulation. The stream functions in Fig. 8 show a

totally opposite behavior than that predicted in Fig. 7.

For N ¼ 1:3, heat absorption is seen to slow down the
circulations in the enclosure while heat generation

speeds them up.

The effects of the Hartmann number Ha and the heat
generation or absorption coefficient / on the average

Nusselt number Nu and the average Sherwood number
Sh for a buoyancy ratio of N ¼ 0:8 are presented in
Figs. 9 and 10, respectively. It is observed that both Nu
and Sh have a decreasing trend with increases in Ha. In
addition, it is observed that heat generation (/ > 0)
decreases the average Nusselt number while heat

absorption (/ < 0) increases it. However, both heat

generation (/ > 0) and heat absorption (/ < 0) decrease
the average Sherwood number. As expected, the effect of

the heat generation/absorption coefficient / is more

pronounced on the values of Nu than on Sh.
A similar set of results for Nu and Sh as those

reported in Figs. 9 and 10 is illustrated in Figs. 11 and 12

for N ¼ 1:3. It is interesting to observe a different be-
havior for Sh in these figures as compared with those
corresponding to N ¼ 0:8. In these figures, both Nu and
Sh increase as the heat absorption effect increases while
they decrease as Ha or / increases. This is associated

with the fact that for this case the flow is dominated by

compositional buoyancy effects.

Figs. 13 and 14 illustrate the influence of the buoy-

ancy ratio N on the average Nusselt and Sherwood

numbers Nu and Sh for three different Hartmann number
values, respectively. It is interesting to observe from these

figures the existence of minimum values in Nu
and Sh for a critical buoyancy ratio Ncr of about 1.2.
The values of Nu and Sh tend to decrease with increasing
values of N for N < Ncr and to increase with increasing
values of N for N > Ncr. The existence of such mini-
mum values in Nu and Sh for a critical value of N has

been reported in the literature (see, for instance,

Fig. 9. Average Nusselt number vs. Hartmann number for heat

generation/absorption effects.

Fig. 10. Average Sherwood number vs. Hartmann number for

heat generation/absorption effects.
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[6,16,24]). These behaviors are associated with the ther-

mal-dominated and compositional-dominated regimes

discussed earlier.

Finally, Figs. 15 and 16 present the effects of the

presence of the magnetic field and heat generation on the

transient oscillatory behavior of jwmaxj and jwminj men-
tioned before for N ¼ 1:0 in comparison with Fig. 3,
respectively. It is observed that the presence of a mag-

netic field in the X-direction decays the oscillatory be-

havior in jwmaxj and jwminj as time progresses. This is

very important especially in regard to solidification

processes such as casting and semiconductor single-

crystal growth applications. In these applications, as the

liquids undergo solidification, fluid flow and turbulence

occur in the solidifying liquid pool and have critical

implications on the product quality control. The use of

magnetic fields has successfully been applied to con-

trolling melt convection in solidification systems. In

Fig. 16, it is clearly seen that the presence of a heat

source within the enclosure in the presence of a magnetic

Fig. 11. Average Nusselt number vs. Hartmann number for

heat generation/absorption effects.

Fig. 12. Average Sherwood number vs. Hartmann number for

heat generation/absorption effects.

Fig. 13. Average Nusselt number vs. buoyancy ratio for dif-

ferent Hartmann numbers.

Fig. 14. Average Sherwood number vs. buoyancy ratio for

different Hartmann numbers.
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field is predicted to speed up the decay of the oscillations

in jwmaxj and jwminj.

7. Conclusions

Unsteady heat and mass transfer by natural convec-

tion flow of a heat-generating fluid inside a rectangular

enclosure filled with an electrically conducting fluid in

the presence of a transverse magnetic field was studied

numerically. The finite-difference method was employed

for the solution of the present problem. Comparisons

with previously published work on special cases of the

problem were performed and found to be in good

agreement. Graphical results for various parametric

conditions were presented and discussed. It was found

that the heat and mass transfer mechanisms and the flow

characteristics inside the enclosure depended strongly on

the strength of the magnetic field and heat generation or

absorption effects. The effect of the magnetic field was

found to reduce the heat transfer and fluid circulation

within the enclosure. In addition, it was concluded that

the average Nusselt number was increased owing to the

presence of a heat sink while it was decreased when a

heat source was present. Furthermore, the periodic os-

cillatory behavior in the stream function inherent in the

problem was decayed by the presence of the magnetic

field. This decay in the transient oscillatory behavior was

speeded up by the presence of a heat source.
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